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Traditional microarrays use probes complementary to

known genes to quantitate the differential gene

expression between two or more conditions. Genomic

tiling microarray experiments differ in that probes that

span a genomic region at regular intervals are used to

detect the presence or absence of transcription. This

difference means the same sets of biases and the

methods for addressing them are unlikely to be relevant

to both types of experiment. We introduce the infor-

matics challenges arising in the analysis of tiling

microarray experiments as open problems to the

scientific community and present initial approaches for

the analysis of this nascent technology.

Introduction

Genomic tiling microarray construction involves the
generation of nucleic acid probes that represent a target
genomic region and their immobilization on a glass slide
(Figure 1a). These probes can either overlap, lay end-to-
end, or be spaced at a predefined average distance in
genomic space (Figure 1b). A sequence of probes spanning
a genomic region is called a ‘tile path’, or a ‘tiling’, and the
average distance, in nucleotides, between the centers of
neighboring probes is termed the ‘step’ or ‘resolution’ of
the tiling. Each probe on a tiling array interrogates the
presence of a sequence in a nucleic acid population via
hybridization. There are two types of tiling array
construction. One type is the oligonucleotide tiling array
[1–10]. Such arrays comprise 25–60 bp probes (the choice
depending on the manufacturer and/or genome tiling),
which are synthesized directly on the slides or prepared in
solution and then deposited. Arrays of high density (up to
6.6 million features in!2 cm2) can currently be prepared.
The second type of tiling array is constructed using PCR
products typically of w1-kb in length, or bacterial
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artificial chromosome (BAC) arrays – typically at 1-Mb
resolution [11–13].

One caveat of the PCR and BAC tiling arrays is that
both the target sequence and its reverse complement
sequence are present at each spot, rendering strand
specificity impossible without additional experiments. In
addition, the w1-kb PCR fragment microarrays are labor
intensive to create and are thus not readily scalable to the
study of large genomes at a high resolution. For example,
a recent study tiling human chromosome 22 (roughly 1%
of the human genome) with PCR products required
O20 000 PCR reactions to achieve a 1-kb resolution [13].
A PCR tiling of the entire human genome would require
approximately two million PCR reactions at the same
resolution and necessitate extensive informatics infra-
structure to support the effort. Analytical techniques for
such arrays typically follow that of other PCR product-
based microarrays and are reviewed elsewhere [14,15].
For these reasons, attention in this manuscript is devoted
to discussion of oligonucleotide-based tiling arrays. To
focus the discussion further, we will limit our discussion to
the application of these arrays to the identification of RNA
transcripts. Tiling arrays have several other utilities,
including interrogating sequences enriched in chromatin
immunoprecipitation DNA (ChIP-chip, reviewed in Refs
[16,17]), DNA copy-number alterations (arrayCGH,
reviewed in Ref. [18]) and protein-binding motifs (PBMs)
[19]. The analyses of these experiments will probably have
some common aspects, but their proper study has
specialized aspects that cannot be considered here owing
to lack of space.

Recent reviews by Johnson et al. [20] and by Mockler
and Ecker [21] provide a good general overview of the
tiling array technology and its applications. In particular,
Johnson et al. raise concerns about low levels of
concordance between transcriptional experiments per-
formed in different laboratories. Differences among data
sets can arise from several factors, including experimental
design, tissues assayed, technological platforms used, and
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Figure 1. Properties of tiling microarrays. (a) The design of a tiling microarray experiment. Each individual probe in the tiling is indicated by a different color and thick overbar.

The probes making up the design constitute a ‘tile path’. Nucleotides not incorporated into probes are grayed. Most array designs randomize the position of the adjacent tiles

on the array in an attempt to avoid systematic errors. (b) Tiling designs (tile paths) can be overlapping, end-to-end or spaced.
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so on. For tiling arrays to reach widespread acceptance,
these differences must be identified and resolved. Towards
this end, we provide an initial perspective on the tiling
microarray experiment from the analytic point of view. In
so doing, we provide an introduction to the characteristics
of data generated by tiling microarrays, introduce some
challenging questions, and give initial views on the
analysis of these relatively new types of microarray
experiments.

Distribution of signal intensities

For tilingmicroarrays, a probe representing some genomic
sequence is the unit of investigation, and an intensity
www.sciencedirect.com
measurement after hybridization to labeled target is its
recorded datum. In theory, this measurement correlates
with the number of target nucleic acid molecules that
hybridized to that probe during the experiment.

Tiling microarrays built using Affymetrix technology
contain a paired ‘mismatch’ probe for each genomic tile
probe (http://www.affymetrix.com/). (For convenience, the
genomic tile probe that perfectlymatches genomic sequence
is typically denoted PMand themismatch probe is similarly
denoted MM.) The MM probe is intended to provide a
measurement of nonspecific nucleic acid binding to the PM
probeandthusthequantityPM–MMtypically servesas the
intensity measurement for Affymetrix tiling arrays.

http://www.affymetrix.com/
http://www.sciencedirect.com
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Figure 2. Intensity distributions. (a) Desired intensity distribution and typical distributions. Intensities are given in arbitrary units. The distribution on the right is from

Kapranov et al. [2]. (b) Effect of small signal distributions. In the left plot, the black line marks the background distribution and red shows a hypothetical signal distribution. For

the hypothetical signal distribution we have simulated a power-law distribution rather than a Gaussian distribution because it has been suggested that transcript abundances

exhibit power-law behavior. Here, the number of measurements comprising the signal distribution is 10% (chosen arbitrarily) of the number of those in the background

distribution. On the right is the sum of these two distributions, indicating the difficulty in separating the mixture.
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In a tiling experiment, as is the case for most
microarray experiments, the goal is to identify outliers
from the predominant background or noise distribution. It
is tempting first to approach this task visually. A priori
one might expect that in a transcript-detection exper-
iment, the desired raw intensity distribution might
appear bimodal wherein a small peak at higher intensity
bins of the histogram contains the transcribed signal
distribution and the adjacent, dominant peak comprises
the background distribution. Unfortunately, such separ-
ation is not realized (Figure 2a) because the majority of
transcribed sequences are probably present at levels just
above background, in accordance with a transcriptional
power-law distribution [22]. This coupled with inherent
noise in the background and signal distributions makes a
separation between signal and background difficult at the
probe level without expensive replicate experiments.
Adding to these problems in higher eukaryotes is that
the percentage of coding DNA relative to total genomic
DNA is very small; this renders distribution fitting
procedures, which allow for the separation of mixed
distributions, useless without large degrees of separation
and/or well-defined functional forms for both background
and signal distributions (Figure 2b).

Within-gene variability

Without a clear separation of distributions, identifying
transcribed sequences by scanning for stretches of
consecutive probes in genomic space exhibiting intensities
significantly above those of some background distribution
seems reasonable. In fact, this is the approach typically
taken in the analysis of tiling array data. Before
discussing such methods, an important aspect of tiling
array data is worth noting, because it has a major impact
on the development of tiling array algorithms. Within a
gene present as a single splice variant, we expect that the
raw signal intensities measured by its multiple corre-
sponding probes will be equivalent throughout. As
exemplified in Figure 3a, in practice, this might not be
the case. Intensities measured from probes within
different exons of the same gene can vary greatly, and
even intensities of genomic nearest neighbor probes
(i.e. probes measuring the same annotated exon) can
differ by orders of magnitude. Such intergene intensity
fluctuations have also been observed with GeneChipsw

brand arrays, but with these arrays the researcher is
typically looking for differences between two or more
biological samples so such systematic effects can be
avoided by using the ratio of intensity of one sample to
intensity of the others. To quantify the intergene
fluctuations with tiling arrays on a genomic scale, we
looked at the intensity of each probe, p, in a large, human
DNA experiment tiling the genome with 36-bp probes with
a resolution of 46 bp [1], and compared it with the average
intensity for the two neighboring probes of p. We found
that for probes lying completely within annotated exons,
w20% of these probes exhibit at least a twofold change in
intensity from the average intensity of their two neighbor-
ing probes (Figure 3b). Many lesser intensity fluctuations
exist. Such fluctuations could potentially be due to
complicated populations of splice variants from the same
www.sciencedirect.com
gene, sequence-based probe effects (due to varying binding
affinities based on sequence [23]), labeling biases, or from
cross-hybridization from sequence-similar transcribed
sequences located elsewhere in the genome. As noted
earlier, similar problems exist on Affymetrixw Gene-
Chipsw brand arrays. The problem is exacerbated,
however, on tiling arrays. On GeneChipw brand arrays,
exon boundaries of genes are known so outlier detection is
straightforward, but on tiling arrays it is difficult to
discern outliers because it is unclear which probes to
include in outlier detection. For example, should one
include a cluster of apparently transcribed probes 20-kb
downstream of a transcript? Are they from the same gene,
or not? Is a low-intensity probe between other high-
intensity probes an outlier, or perhaps an intron? Such
questions make tiling-array outlier detection non-
straightforward, or worse, impossible.

If the intensity fluctuations come from differences in
binding energies between probe sequences, there are
models for correcting this type of effect in GeneChipsw

brand arrays, but they are still debated [24] and are as yet
untested for tiling microarrays. Another approach for
addressing these biases is to deal with them during the
probe design procedure. In many designs, the designer is
allowed to select probes by shifting their genomic
positioning slightly so that the variance of melting
temperatures of probes across the whole array is
minimized. Probe sets on GeneChipsw brand arrays also
attempt this. The shifting allowed on tiling arrays is much
more constrained because the design must conform to the
bounds (or limits) set by the predetermined span of the
array. Similar considerations apply in other situations
where the probe location is highly constrained, for
example, single nucleotide polymorphism (SNP) arrays
[25] or arrays with probes spanning splice junctions [7].

Another solution to sequence biases could be to design
the arrays with varying probe lengths so as to correct for
differences in the melting temperatures of sequences.
Such ‘isothermal’ arrays are feasible with the recently
developed maskless, photolithography-array synthesis
technique [26,27] and are currently under development.
Such approaches potentially aid in reducing sequence
biases but the likely complicated problem of cross-
hybridization remains.

Another design feature is the option to include MM
probes on the array. Theoretically, MM probes measure
the amount of cross-hybridization to the PM probe from
unintended targets. We find that the inclusion of suchMM
probes reduces within-gene intensity variability some-
what but does not eliminate the effect (Figure 3a). A recent
study of GeneChipsw brand arrays indicates thatw10% of
probes cross-hybridize to multiple genes [28] so it is an
interesting question as to how much utility MM probes
have for tiling experiments. For a tiling array built for
human chromosome 22 [2] on which PM and MM probes
are present, we find that PM probe intensities within
RefSeq genes significantly correlate with PM probe
intensities of the preceding neighboring tile (Spearman
rZ0.156, P!10K15) but that PM-MM intensities correlate
better (Spearman rZ0.175, P!10K15). It is clear that MM
probes help, but there is still much room for improvement.

http://www.sciencedirect.com
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Tiling microarray normalization

For many applications of tiling arrays, slide-to-slide
normalization is not required because there are no
technical replicates and we typically are not interested
in comparing absolute intensities of genes present on one
array with those found on another. However, if technical
replicates with the same array design are performed, or if
we wish to compare abundances of different genes across
the experiment, the measurements of the arrays will have
to be scaled to one another before downstream analysis
can take place.

For traditional (i.e. nontiling arrays using probes to
annotated genes) microarray experiments, it is known
that adjustments to the signal distributions can be
essential before proper statistical analysis can be under-
taken [14,15]. This is partly because there are several
experimental parameters that commonly vary from one
microarray hybridization to another in the same data set.
These variables include, among others, laser strength
used to obtain fluorescence measurements, concentration
of nucleic acid allowed to hybridize to the array and
hybridization times and temperatures. Equally important
are so-called intraslide spatial artifacts such as nonuni-
form hybridization efficiency [29,30] and/or nonuniform
background intensities across the microarray surface [31].

A simple adjustment for correcting bias due to differing
hybridization concentrations or conditions between micro-
arrays in these conventional gene-based experiments has
been to divide each intensity measurement by the median
intensity present on the microarray on which it resides
[14]. More rigorous approaches that also account for
intraslide variability include fitting a loess surface
(similar to a sliding window median) to the intensities
measured as a function of their physical positioning on the
microarray and then using this surface as a normalizing
function [32]. These normalization practices assume that
at least half of all probes on each microarray produce
measured signal due to the presence of hybridized nucleic
acid. This is a valid assumption for most conventional
microarray studies because typically only annotated genes
are represented. However, for most tiling microarray
experiments involving large, complex genomes and
where poly-A selected RNA is the target, we expect a
relatively small number of probes to emit measurable
signal due to hybridization. Thus, the median intensity of
the microarray is likely to be a background measurement
and cannot be used to correct for hybridization-type
effects. One might also be tempted to use the uppermost
tenth percentile or some other quantile intensity for
normalization. Doing so is paramount to ‘guessing’ at
how much transcriptional activity there is across the
genome, and thus makes the approach less rigorous. This
type of median or other quantile correction can, however,
Figure 3. Within-gene intensity fluctuation. (a) Gene exhibiting typical intensity fluctuatio

35-bp probes with a step size of 35 bp. Red bars illustrate probes that lie within introns,

intensities, mismatch (MM) intensities and PM – MM differences in intensities are sho

fluctuations within RefSeq genes. The x-axis represents the fold difference on a log2

intensities of neighboring probes. The cross indicates the point at which 20% of all prob

et al. [1].

www.sciencedirect.com
still be useful for correcting differing scanning voltages
used from array scan to array scan.

Spatial normalizations can be conducted if control
probes of identical oligonucleotide sequence are placed
uniformly across the surface of the slide because these
are all expected to emit the same significant intensity
in an ideal experiment. In an Escherichia coli tiling
experiment, Selinger et al. [5] printed positive control
probes throughout the array and multiplied the
intensity of each experimental probe by a correction
factor that is a function of the intensities of the four
closest control features and their physical distances to
the experimental probe. This factor was calculated
using Equation 1,

EðcÞ

X4
iZ1

1

diX4
jZ1

1

dj

0
BBBBB@

1
CCCCCAci

(Eqn 1)

where di is the physical distance of control probe i to the
experimental probe to be normalized, ci is the intensity of
the ith control, and E(c) is the average intensity of all
control probes on the array.

An additional point to consider when designing normal-
ization procedures for tiling microarrays is that a single
experiment can consist of hundreds of individual micro-
arrays, each containing a distinct set of probes. For
instance, one microarray might tile human chromosome
21 and another might tile chromosome 22. An assumption
for most standard microarray normalization procedures is
that the intensity distributions from array to array are
identical. It might be that one chromosome, which is
printed on a single slide, is more gene dense than another
chromosome, which is printed on a different slide, and the
underlying distributions are thus not identical. A clear
example of this is seen when contrasting the gene-dense
human chromosome 22 with the gene-sparse human
chromosome 21. To remedy this issue, all probes can be
printed in a random fashion with respect to their
chromosomes, strands and locations within their chromo-
somes. Because the number of probes on each microarray
is large, the distributions to be considered should be close
to identical. Then, it could be more reasonable to perform
slide-to-slide quantile normalization.
Algorithms for tiling microarray analysis

As examples of algorithms for detecting transcription from
tiling array data, we review algorithms from three recent
human tiling microarray experiments, two of which allow
small gaps in genomic space between probes, and one
that overlaps the genomic positions. The three examples
ns. Data shown are for RefSeq gene NM_001001479 from Kapranov et al. [2], using

whereas blue bars demonstrate probes within exons. Plots for perfect match (PM)

wn. (b) Empirical cumulative distribution function for nearest neighbor intensity

scale between observed intensity and expected intensity, based on the average

es show a twofold deviation from their expected intensities. Data are from Bertone

http://www.sciencedirect.com
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were taken from studies using three array construction
technologies, and therefore represent a good cross-section
of the field. The first methods we review were developed
for a large-scale experiment using the Affymetrix tech-
nology to construct probes spaced, on average, every 35 bp
along chromosomes 21 and 22 [2,3]. The second set of
methods reviewed were implemented on tiling micro-
arrays built with Nimblegenemaskless photolithography
technology [1] and consisted of 36-bp probes with a
resolution of 46 bp (http://www.nimblegen.com/). In both
examples, the algorithms presented are independent of
data normalizations (i.e. they do not assume any normal-
izations have been performed) and do not necessarily
require replicate hybridizations and are, therefore,
general in nature. The third analysis approach we
summarize was used in a recent study of human
chromosomes 20 and 22 using the Agilente technology
to deposit 60-bp probes, on average, every 30 bp along
those chromosomes [4]. This algorithm requires multiple
replicates and is therefore useful when hybridizations are
conducted for several tissues [4,6,33].
Analysis of Kampa et al.

In an in-depth analysis of human chromosomes 21 and 22
[3], a probe was deemed ‘positive’ using the following
procedure. For a given probe, i, all PM-MM pairs are
collected within a window, w, of 100 nucleotides, centered
at i. For each of these pairs, the difference between PM
and MM intensities is calculated. The Hodges–Lehman
estimator, or ‘pseudo-median’, is then computed for these
PM – MM differences (Figure 4). This estimator is simply
the median of pairwise averages among the PM minus
MM scores within the window and has close ties with
rank-sum statistics. Any probe having a Hodges–Lehman
estimator above a threshold (defined using bacterial
oligonucleotides present on the array but not homologous
+(

+(

+(

Probes within win

Paired averages within

Pseudo-mediani = med(Ai–1, i

Ai–1, i = paired aver

PMi–2 – MMi–2 PMi–1 – MMi–1 PMi  – MMi

Ai–1, i+1 = paired ave

Ai, i+1 = paired aver

PMi–1 – MMi–1

PMi–1 – MMi–1

PMi 

PMi+1 –

PMi – MMi PMi+1 –

Figure 4. Calculation of the pseudo-median at probe position two. Psuedo-medians are c

position i). This psuedo-median is simply the median of pairwise averages among the P

www.sciencedirect.com
to any sequences in the human genome) is considered
‘positive’, or transcribed. Using this estimator partly
alleviates concerns discussed earlier about within-gene
variability because it is notably robust to outliers.
Transcribed fragments, or ‘transfrags’, were then con-
structed from lists of positive probes bymerging those that
lie in close genomic proximity (within 40 bp – this variable
is called ‘maxgap’ in the original publication) to each other
and filtering out transfrags !90 bp (this threshold is
termed ‘minrun’) in length. This merging of neighboring
probes further diminishes the effect of within-gene
variability because confidence in measured intensities is
increased with increasing amounts of evidence.
Analysis of Bertone et al.

Another recent tiling microarray study focusing on the
human transcriptome [1] employs an alternative approach
for detecting transcription using the binomial theorem. In
this work, two procedures are introduced: one algorithm
for comparing tiling array data with existing annotation,
and another algorithm for identifying transcriptionally
active regions (TARs – equivalent but different terminol-
ogy to the above defined transfrag).

To check the tiling array data against a previously
annotated gene, the probes that lie within the exons of
that gene were first identified. The number of such
probes was denoted as n. For each probe it was
recorded whether or not its measured intensity was
greater than the median intensity of the slide from
which it was measured. By definition, half of the
measured intensities of a slide are greater than the
median and half are less than the median. To
determine if the gene was transcribed, it was
determined whether or not the number of intensities
within the gene recorded above this median was more
than expected by chance alone. The probability, p, of
TRENDS in Genetics 
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obtaining h probes with above-median intensities out of
N probes within the gene is given by Equation 2.

pZ 0:5N
XN
iZh

N

i

 !
(Eqn 2)

Then, it isamatter of choosing thedesired false-positive rate
and setting the p-value cutoff value accordingly.

A similar approach was taken for finding novel regions
of activity within the genome. However, when all stretches
of, say, ten adjacent probes are tested for significance the
number of hypotheses tested across a mammalian genome
reaches into the millions and one would require a low
p-value cutoff to weed out the large number of expected
false-positives. For example, in the human genome, if one
wanted to identify unique stretches of ten probes (each
probe a 50 bp oligonucleotide) there would be three million
independent tests to perform and if we use a p-value cutoff
of 0.01 this would result in an expected 30 000 false-
positive regions. To lower the number of false positives
obtained, a low p-value cutoff is needed. To achieve such
low p-values for novel regions with the above approach,
large stretches of adjacent probes or replicate experiments
would be required owing to the low statistical power of the
test. Mammalian exons are significantly !500 bp on
average, and if low p-values are required there will be a
significant bias towards the largest transcribed
sequences. However, if one is willing to be more stringent
when identifying novel regions of interest, then such
low p-values can readily be obtained without the use of
large stretches or costly replicate experiments. For
example, instead of counting the number of probes in a
stretch greater than the slide median, the number of
probes, h, above the kth percentile (e.g. 80th) of the
slide could be counted and this number could be
checked for significance with the binomial equation
(Equation 3).

PZ
Xn
iZh

kNKhð1KkÞh
N

i

 !
(Eqn 3)

Regions identified by this method are then merged into a
single transcribed region if their genomic coordinates
overlap.

The reader should note that the requirement of low
P-values is essentially a Bonferroni correction for multiple
hypothesis testing. This correction is known to be overly
conservative and therefore the above approach probably
errs on the conservative side. Another issue with the
Bonferroni correction is that it assumes statistical
independence of the probes. This is certainly true under
the null hypothesis of zero transcription but for probes
within the same gene this assumption is probably violated
and hence P-values obtainedmust be considered asmerely
nominal. To obtain more accurate estimates of false
positives, a reasonable approach to take is first to score
your data using the above, or any other algorithm, record
your ‘hits’, and then randomize your data with respect to
genomic location and re-score. The number of hits you
obtain from the randomized scoring yields an empirical
estimate of false positives.
www.sciencedirect.com
Another approach towards the multiple testing
problem employs the false-discovery rate (FDR) stat-
istic. The FDR technique first requires P-values to be
calculated by some statistical method. Then the FDR
at a given P-value threshold is simply the threshold
multiplied by the number of tests performed, divided
by the number of positives obtained at that threshold.
This approach can be utilized in traditional microarray
experiments as well [34].

Analysis of Schadt et al.

In a tiling microarray experiment assessing transcription
in six tissues across human chromosomes 20 and 22 [4],
probes were first identified as being expressed using
robust principal components analysis (PCA). Specifically,
the authors used a sliding-window approach with
windows of 500 probes (30 bp resolution tiling using
60-bp probes) wherein each window a PCAwas performed
and the first two dimensions were retained. The window
size was selected to ensure that most windows included at
least one transcribed sequence, on average. The first
principal component was found to agreed closely with
average probe intensity across tissues and the second
dimension estimated variation across tissues. Next,
windows with small values in the second principal
component space were discarded. Of the remaining
windows, the distance (Mahalanobis distance, MD) from
each point in the two-dimensional principal component
space (PCS) was computed from the center of the data of
the window. The use of the MD is important for controlling
for probe-to-probe intensity fluctuations and because it
serves as a way of normalizing them all to the same scale.
Outliers were identified by comparing these MDs with
those obtained by performing the same analysis on a
separate set of intron probes (which are thought not to
exhibit signal due to the selection of polyAC RNA by this
experiment). MDs significantly larger than those found in
the intron distribution (97.5th percentile) were sub-
sequently deemed ‘on’, and the sequences they represent
as transcribed. The use of probe sequences not expected to
be transcribed as negative controls to aid in identifying
transcribed regions is common in tiling experiments. For
example, recent reports of tiling the Arabidopsis genome
used putative promoter regions to obtain an intensity
threshold [8,10], and an E. coli experiment used inten-
sities measured from Bacillus subtilis probes [5] (tran-
scribed sequences were defined as stretches of contiguous
probes in genomic space above these thresholds).

The authors of this human tiling go one step further –
that is, to group the transcribed segments into putative
genes and gene structures. To do this, the authors
performed one-dimensional hierarchical clustering of the
MDs belonging to probes labeled as ‘on’. Probes that
cluster together were grouped to form genes, the simple
rationale being that probes from the same gene should
exhibit similar intensities.

Comparison of algorithms

As discovered in Johnson et al. [20], tiling experiments
probing the same genomic regions often do not produce the
same results. There are several possible explanations for
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these discrepancies, and it is vital for the technology that
the causes are identified. One possibility is the employ-
ment of different analysis algorithms. For a rigorous
comparison, a gold-standard data set where we know
exactly which bases are transcribed under some biological
condition is required. Unfortunately, no standard exists
over a large genomic region. In the absence of a gold
standard, we sought to count the number of transcribed
regions identified by the algorithms used in Bertone et al.
[1] and in Kampa et al. [3] as a function of the respective
input parameters (minrun, maxgap) of the algorithms.
Although this does not directly address issues of exper-
imental agreement, it is a step in that direction. In
addition to counting the number of regions identified, we
also calculated the number of transcribed regions ident-
ified in a randomized data set – thus providing an estimate
of false positives as a function of algorithm parameteriza-
tion. These calculations were performed on a single array
representing human chromosome 22 from Kapranov et al.
[2]. We did not include the analysis in Schadt et al. in our
comparison because it requires multiple tissues and is
therefore not directly comparable to the other two
methods. The two methods we compare use only signal
intensities, whereas Schadt et al. used correlations of
signals to identify transcription. Clearly, this is an
advantage of performing multiple tissue experiments.

Figure 5 plots the number of identified regions versus
the number of regions identified in the randomized data
for varying parameterizations on a log-log scale. It is
clear that both methods demonstrate the ability to find
things at a rate significantly favoring the actual data
(i.e. many more things are identified than would be
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expected by chance) and that, for a range of parameteriza-
tions, the method of Kampa et al. [3] outperforms that of
Bertone et al. [1].

In the context of Figure 5, the distance a point is above
the 458 diagonal correlates with the ability of that
parameterization to discriminate real transcription
while minimizing the identification of spurious entities.
A potentially revealing finding from our analysis is that
the parameterization used for these data originally in
Kampa et al. yields similar numbers of identified regions
in the actual and randomized data. The original work
reported a large number of identified regions, but it now
seems likely that this number is an overestimate. This is
somewhat surprising because the parameterization orig-
inally used had sound reasoning behind it based on the
average lengths of exons in addition to obtaining an
intensity threshold from well-selected bacterial negative
controls. The parameterizations yielding significantly
more positives than in the randomized set are those that
have large windows and require high intensity thresholds.
Concluding remarks

Tiling microarray experiments are an exciting and
relatively new application of microarray technology.
Because the experiment is inherently different from its
gene-centered counterparts, new statistical procedures
need to be developed to account for the types of data tiling
arrays can generate. We have presented aspects of tiling
array data that can make their analysis difficult and have
reviewed initial approaches to addressing these issues.
The field of tiling array analysis is young and ripe for
algorithmic discovery. We hope and expect to see research
in this area flourish over the next few years. In particular,
we hope to see careful multiplatform and multiprotocol
studies where technical reproducibility and sensitivity
versus specificity analyses can be carried out. Such studies
will require generating a gold-standard genomic region
where we understand transcription well – that is, where
we know what is truly transcribed and what truly is not.
With the advent of the ENCODE (encyclopedia of DNA
elements) project [35], which plans to use tiling arrays as a
major tool for human genome annotation, there is
increasing need for such developments. Such progress
will probably expand the robust application of tiling
arrays to detailed exon-intron boundary discovery, detec-
tion of alternative splicing and single nucleotide poly-
morphism analysis.
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